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Time series features

Transform a given time series y = {y1, y2, · · · , yn} to
a feature vector F = (f1(y), f2(y), · · · , fp(y))′}.
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Features used to select a forecasting model
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length
strength of seasonality
strength of trend
linearity
curvature
spikiness
stability
lumpiness
parameter estimates of
Holt’s linear trend method
spectral entropy
Hurst exponent
nonlinearity

parameter estimates of
Holt-Winters’ additive
method
unit root test statistics
crossing points, flat spots
peaks, troughs
ACF and PACF based
features - calculated on raw,
differenced, and remainder
series.
ARCH/GARCH statistics and
ACF of squared series and
residuals.



Meta-learning
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Meta-learning
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Feature-based forecasting algorithms
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Feature-based forecasting algorithms

three algorithms: FFORMS, FFORMA, FFORMPP 9



FFORMS: Feature-based FORecast Model Selection
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FFORMS: observed sample
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FFORMS: simulated time series
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FFORMS: reference set
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FFORMS: Meta-data
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FFORMS: Meta-data
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FFORMS: Meta-data
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FFORMS: Meta-data
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FFORMS: Meta-data
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FFORMS: Meta-data
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FFORMS: Random-forest classifier
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FFORMS: “online” part of the algorithm
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FFORMS: “online” part of the algorithm
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FFORMS: “online” part of the algorithm
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Application to M competition data

Proposed algorithm is applied to yearly, quarterly
and monthly series separately.
We run two experiments for each case.

Experiment 1 Experiment 2
Source Y Q M Source Y Q M

Observed series M1 181 203 617 M3 645 756 1428

Simulated series 362000 406000 123400 1290000 1512000 285600

New series M3 645 756 1428 M1 181 203 617
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Experiment 1: Distribution of time series in the PCA space

observed - M1
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Experiment 1: Distribution of time series in the PCA space

observed - M1 simulated
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Experiment 1: Distribution of time series in the PCA space

observed - M1 simulated new - M3
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Experiment 2: Distribution of time series in the PCA space

observed - M3 simulated subset new - M1
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Results: Yearly
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Results: Quarterly
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Results: Monthly
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M4 Competition: 2018

100,000 time series: yearly, quarterly, monthly,
weekly, daily, hourly 32



FFORMS: Feature-based FORecast Model Selection
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FFORMS: Feature-based FORecast Model Selection

optimization criterion: classification accuracy 34



FFORMA: Feature-based FORecast Model Averaging

optimization criterion: forecast accuracy 35



FFORMA: Models included

naive
random walk with drift
seasonal naive
theta method
automated ARIMA algorithm
automated exponential smoothing algorithm
TBATS model
STLM-AR Seasonal and Trend decomposition
using Loess with AR modeling of the seasonally
adjusted series
neural network time series forecasts 36



FFORMA: Feature-based FORecast Model Averaging

Like FFORMS but we use xgboost rather than a
random forest.

Optimization criterion: forecast accuracy
The probability of each model being best is used
to construct a model weight.
A combination forecast is produced using these
weights.
248 registrations, 50 submissions
Came second in the M4 competition
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Yearly: Correlation between MASE values across different forecast algorithms
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FFORMPP: Feature-based FORecast Model Performance Prediction

use the minimum predicted MASE to select forecast method(s)
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FFORMPP: Feature-based FORecast Model Performance Prediction

We use Efficient Bayesian Multivariate Surface
Regression

Y: forecast error of each method, we take the
correlation structure between the errors into
account.
Why Efficient Bayesian Multivariate Surface
Regression?

I handles interactions and nonlinear relationships
between features

I allows the knot locations to move freely in the
feature space, thus a less number of knots are
usually used

40
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Application to M4 Competition

Composition of the time series in the reference
set and collection of new time series

Frequency
Reference set New series

M1 M3 Simulated M4
Yearly 181 645 10000 23000
Quarterly 203 756 10000 24000
Monthly 617 1428 10000 48000
Weekly - - 10000 359
Daily - - 10000 4227
Hourly - - 10000 414
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Simulated data

Augmenting the observed sample with simulated
time series from mixture autoregressive (MAR)
models
Proposed by Kang, Hyndman and Li (2018),
Efficient generation of time series with diverse
and controllable characteristics
R package:
https://github.com/ykang/tsgeneration

43

https://github.com/ykang/tsgeneration


Distribution of time series in the PCA space

black: observed, green-simulated, orange-M4 44



Distribution of time series in the PCA space

green-simulated, orange-M4 45



Results: forecast accuracy based on MASE

Yearly Quarterly Monthly Weekly Daily Hourly
FFORMPP-combination* 3.07 1.13 0.89 2.46 3.62 0.96
FFORMPP-individual 3.37 1.17 1.05 2.53 4.26 1.06
auto.arima 3.40 1.17 0.93 2.55 - -
ets 3.44 1.16 0.95 - - -
theta 3.37 1.24 0.97 2.64 3.33 1.59
rwd 3.07 1.33 1.18 2.68 3.25 11.45
rw 3.97 1.48 1.21 2.78 3.27 11.60
nn 4.06 1.55 1.14 4.04 3.90 1.09
stlar - 2.02 1.33 3.15 4.49 1.49
snaive - 1.66 1.26 2.78 24.46 2.86
tbats - 1.19 1.05 2.49 3.27 1.30
wn 13.42 6.50 4.11 49.91 38.07 11.68
mstlarima - - - - 3.84 1.12
mstlets - - - - 3.73 1.23
combination (median) 3.29 1.22 0.95 2.57 3.52 1.33
combination (mean) 4.09 1.58 1.16 6.96 7.94 3.93

FFORMPP-combination*: based on median forecasts of the four
algorithms with minimum predicted MASE 46



Results: FFORMS, FFORMA, FFORMPP

forecast accuracy based on MASE

Yearly Quarterly Monthly Weekly Daily Hourly
FFORMPP-combination 3.07 1.13 0.89 2.46 3.62 0.96
FFORMA-combination 3.06 1.11 0.89 2.10 3.34 0.81
FFORMPP-individual 3.37 1.17 1.05 2.53 4.26 1.06
FFORMS-individual 3.16 1.20 0.98 2.31 3.56 9.33

Algorithm complexity and time to calculate
forecasts

FFORMS < FFORMPP < FFORMA
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Discussion and Conclusions

Three feature-based algorithms for large scale
forecasting.

Each of these algorithms uses a meta-learning
approach to guide the way the forecasts are
computed.

Future directions:
- Combination of FFORMS, FFORMA, FFORMPP
- Density forecast
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R packages and papers

R packages
seer: FFORMS
github.com/thiyangt/seer
M4metalearning: FFORMA.
github.com/robjhyndman/M4metalearning
fformpp: FFORMPP
github.com/thiyangt/fformpp

Papers
Available from robjhyndman.com

email: thiyanga.talagala@monash.edu
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