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Time series features

m Transform a given time seriesy = {y1,y2, -+ ,¥n} to
a feature vector F = (fi(y), f2(y), - - - , fo(y))'}.
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Time series features

m Transform a given time seriesy = {y1,y2, -+ ,¥n} to
a feature vector F = (fi(y), f2(y), - - - , fo(y))'}.
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Features used to select a forecasting model

length

strength of seasonality
strength of trend
linearity

curvature

spikiness

stability

lumpiness

parameter estimates of
Holt’s linear trend method
spectral entropy

Hurst exponent
nonlinearity

parameter estimates of
Holt-Winters’ additive
method

unit root test statistics
crossing points, flat spots
peaks, troughs

ACF and PACF based
features - calculated on raw,
differenced, and remainder
series.

ARCH/GARCH statistics and
ACF of squared series and
residuals.



Meta-learning
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Feature-based forecasting algorithms
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Feature-based forecasting algorithms

problem calculate
space features
train a
model
algorithm algorithm
space performance
new instance calculate meta-learner
features
output

m three algorithms: FFORMS, FFORMA, FFORMPP



FFORMS: Feature-based FORecast Model Selection
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FFORMS: observed sample
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FFORMS: simulated time series
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FFORMS: reference set
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FFORMS: Meta-data
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FFORMS: Meta-data
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FFORMS: Meta-data
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FFORMS: Random-forest classifier
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FFORMS: “online” part of the algorithm
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FFORMS: “online” part of the algorithm

reference set
lati observed period features
popuiation - B

simulated
time series

traina
classification

algorithm
output -
labels

test identify [
period “best” model

random

f r
ealltuI et. forest
calculation classifier

new time
series

+
forecasting
method
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Application to M competition data

m Proposed algorithm is applied to yearly, quarterly
and monthly series separately.

m We run two experiments for each case.

Experiment 1 Experiment 2
Source Y Q M Source Y Q M

Observed series M1 181 203 617 M3 645 756 1428
362000 406000 123400 1290000 1512000 285600
M3 645 756 1428 M1 181 203 617
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Experiment 1: Distribution of time series in the PCA space
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Experiment 1: Distribution of time series in the PCA space
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Experiment 1: Distribution of time series in the PCA space
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Experiment 2: Distribution of time series in the PCA space
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Results: Yearly
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Results: Quarterly
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Results: Monthly
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M4 Competition: 2018
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FFORMS: Feature-based FORecast Model Selection
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FFORMS: Feature-based FORecast Model Selection

population

reference set
observed
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training
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identify
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m optimization criterion:

feature
calculation

classifier
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classification accuracy
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FFORMA: Feature-based FORecast Model Averaging

reference set
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FFORMA: Models included

naive

random walk with drift

seasonal naive

theta method

automated ARIMA algorithm

automated exponential smoothing algorithm
TBATS model

STLM-AR Seasonal and Trend decomposition
using Loess with AR modeling of the seasonally
adjusted series

m neural network time series forecasts ”



FFORMA: Feature-based FORecast Model Averaging

m Like FFORMS but we use xgboost rather than a
random forest.
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FFORMA: Feature-based FORecast Model Averaging

m Like FFORMS but we use xgboost rather than a
random forest.

m Optimization criterion: forecast accuracy

m The probability of each model being best is used
to construct a model weight.

m A combination forecast is produced using these
weights.

m 248 registrations, 50 submissions

m Came second in the M4 competition
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Yearly: Correlation between MASE values across different forecast algorithms
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FFORMPP: Feature-based FORecast Model Performance Prediction
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FFORMPP: Feature-based FORecast Model Performance Prediction
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B use the minimum predicted MASE to select forecast method(s) 39



FFORMPP: Feature-based FORecast Model Performance Prediction

m We use Efficient Bayesian Multivariate Surface
Regression

40



FFORMPP: Feature-based FORecast Model Performance Prediction

m We use Efficient Bayesian Multivariate Surface
Regression

m Y: forecast error of each method, we take the
correlation structure between the errors into
account.

40



FFORMPP: Feature-based FORecast Model Performance Prediction

m We use Efficient Bayesian Multivariate Surface
Regression

m Y: forecast error of each method, we take the
correlation structure between the errors into
account.

m Why Efficient Bayesian Multivariate Surface

Regression?
» handles interactions and nonlinear relationships
between features
» allows the knot locations to move freely in the
feature space, thus a less number of knots are
usually used 40



Application to M4 Competition

m Composition of the time series in the reference
set and collection of new time series

Reference set New series

Frequency )
M1 M3 Simulated M4
Yearly 181 645 10000 23000
Quarterly | 203 756 10000 24000
Monthly | 617 1428 10000 48000
Weekly - - 10000 359
Daily - - 10000 4227
Hourly - - 10000 414
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Application to M4 Competition

m Composition of the time series in the reference
set and collection of new time series

Frequency Reference set New series

M1 M3 |Simulated M4
Yearly 181 645 10000 23000
Quarterly | 203 756 10000 24000
Monthly 617 1428 10000 48000
Weekly = = 10000 359
Daily - - 10000 4227
Hourly - - 10000 414
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Simulated data

m Augmenting the observed sample with simulated
time series from mixture autoregressive (MAR)
models

m Proposed by Kang, Hyndman and Li (2018),
Efficient generation of time series with diverse
and controllable characteristics

m R package:
https://github.com/ykang/tsgeneration
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Distribution of time series in the PCA space

m black: observed, green-simulated, orange-M4 44



Distribution of time series in the PCA space

m green-simulated, orange-M4 45



Results: forecast accuracy based on MASE

Yearly Quarterly Monthly Weekly Daily Hourly
FFORMPP-combination* 3.07 1.13 0.89 246 3.62 0.96
FFORMPP-individual 3.37 1.17 1.05 2.53 4.26 1.06
auto.arima 3.40 1.17 0.93 2.55 - -
ets 3.44 1.16 0.95 - - -
theta 3.37 1.24 0.97 2.64 3.33 1.59
rwd 3.07 1.33 1.18 2.68 325 11.45
rw 3.97 1.48 1.21 2.78 3.27 11.60
nn 4.06 1.55 1.14 4,04 3.90 1.09
stlar - 2.02 1.33 3.15 4.49 1.49
snaive - 1.66 1.26 2.78 24.46 2.86
tbats o 1.19 1.05 249 3.27 1.30
wn 13.42 6.50 411 49.91 38.07 11.68
mstlarima - - - - 3.84 1.12
mstlets = = = - 373 1.23
combination (median) 3.29 1.22 0.95 2.57 3.52 1.33
combination (mean) 4.09 1.58 1.16 6.96 7.94 3.93

FFORMPP-combination™*: based on median forecasts of the four
algorithms with minimum predicted MASE



Results: FFORMS, FFORMA, FFORMPP

m forecast accuracy based on MASE

Yearly Quarterly Monthly Weekly Daily Hourly
FFORMPP-combination | 3.07 1.13 0.89 246 3.62 0.96
FFORMA-combination 3.06 1.11 0.89 210 3.34 0.81
FFORMPP-individual 3.37 1.17 1.05 2.53 4.26 1.06
FFORMS-individual 3.16 1.20 0.98 2.31 3.56 9.33

Algorithm complexity and time to calculate
forecasts

FFORMS < FFORMPP < FFORMA

47



Discussion and Conclusions

m Three feature-based algorithms for large scale
forecasting.
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Discussion and Conclusions

m Three feature-based algorithms for large scale
forecasting.

m Each of these algorithms uses a meta-learning
approach to guide the way the forecasts are
computed.

m Future directions:
- Combination of FFORMS, FFORMA, FFORMPP
- Density forecast

48



R packages and papers

R packages

m seer: FFORMS
github.com/thiyangt/seer

m M4metalearning: FFORMA.
github.com/robjhyndman/M4metalearning

m fformpp: FFORMPP
github.com/thiyangt/fformpp

Available from robjhyndman.com

email: thiyanga.talagala@monash.edu
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